20BSP					Time Series Analysis					
Teaching Scheme					Examination Scheme					
L	т	Ρ	С	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
					25	50	25			100

COURSE OBJECTIVES

- To introduce the concept of random variables and central limit theorem. ?
- ? To introduce the basic concept of time series and the concept of correlogram.
- It introduce various probability models for modelling time series.
- ? To introduce the concept of ergodicity used for model building from single time series.
- To introduce the method of estimation of parameters for various models. ?
- ? To introduce the methods of forecasting using the various time series models.

UNIT 1 Review of random variables and introduction to time series

Review of Probability theory and random variables, joint distribution, central limit theorem, Introduction to Time series: Examples, simple descriptive techniques, trend, seasonality, the correlogram, correlogram behaviour for data with pure random numbers, trend and periodicity.

UNIT 2 Probability models for time series.

Probability models for time series: stationarity process, weak stationarity, second-order stationary process, properties of autocorrelation function, purely random process, random walk model, Moving average (MA) process, Autoregressive (AR) process, ARMA and ARIMA models.

UNIT 3 Parameter estimation for time series models

Estimating the autocovariance and autocorrelation function, using correlogram in modelling, ergodicity, fitting an autoregressive process and estimation of parameters, fitting a moving average process and estimation of parameters, estimating parameters for ARMA and fitting ARIMA models, Box-Jenkins, seasonal ARIMA models

UNIT 4 Introduction to Forecasting

Introduction to forecasting, forecasting in univariate processes, extrapolation of trend, simple exponential smoothing, Holt-Winters forecasting procedures, Box-Jenkins procedure, Other methods, Prediction intervals. Multivariate procedures, multiple regression, econometric models. Examples, Prediction Theory.

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Understand the concept of random variables and central limit theorem.
- CO2 Understand the basic concept of time series and the concept of correlogram.
- CO3 Understand the various probability models for modelling time series.
- CO4 Understand the concept of ergodicity used for model building from single time series.
- CO5 Understand the method of estimation of parameters for various models.
- CO6 Understand the methods of forecasting using the various time series models.

TEXT/REFERENCE BOOKS

- Chris Chatfield, "The Analysis of Time Series: An Introduction", 6th edition, Chapman and Hall / CRC, 2003.
- William Wei, "Time Series Analysis: Univariate and Multivariate Methods", 2nd edition, Pearson/Addison Wesley, 2006.
- 3. R. H. Shumway and D. S. Stoffer, "Time Series Analysis and Its Applications: With R Examples", 2nd edition, , 2006.
- 4. James D. Hamilton, "Time Series Analysis", Princeton, NJ: Princeton University.
- 5. James D. Hamilton, "Time Series Analysis", Princeton, NJ: Princeton University Press, 1994.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100 Part A/Question: <Details> Part B/Question: <Details> Exam Duration: 3 Hrs <> Marks <> Marks